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Asymptotic behavior of A+B — inert for particles with a drift
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We consider the asymptotic behavior of the (one dimensional) two-species annihilation reaction
A + B — 0, where both species have a uniform drift in the same direction and like species have a
hard core exclusion. Extensive numerical simulations show that starting with an initially random

distribution of A’s and B’s at equal concentration the density decays like t~

/3 for long times. This

process is thus in a different universality class from the cases without drift or with drift in different

directions for the different species.
PACS number(s): 05.40.+j, 82.20.Mj, 02.50.—r

The irreversible two-species annihilation reaction A+B
— 0 has been studied for quite some time as an example
of a reaction diffusion process where fluctuations are im-
portant, so that the density may decay more slowly than
one would predict from the mean field rate equations (at
least in low dimension) [1-7]. If the initial concentrations
of the two species differ, then the density of the “lesser”
species decays exponentially, as is expected from mean
field theory. The more interesting case occurs when the
concentrations are the same: the standard picture [1] is
that in a region of size L it takes a time on the order of
L? for all the particles to react, since they must diffuse
around the region in order to annihilate. The remaining
density will be proportional to the initial excess of either
type A or type B particles in this region, which is pro-
portional to the square root of the volume. Thus at time
t one expects that the concentration ¢(t) will behave as

e(t)~ [e(0) L4/ LY ~ [c(0)t4/2]1/2 1412
= c(0)/2~ /4, (1)

for dimension d < 4, i.e., c(O)l/zt_l/4 in dimension one,
which has been verified rigorously [4,7]. In comparison
the mean field result is c(t) = [t + 1/c(0)] 7.

In order for this picture to be valid, it is necessary
that the distribution of particles be actually determined
by diffusion. The addition of a drift field can invalidate
this assumption.

That this happens when the two species drift in op-
posite directions is not unexpected. If the dynamics are
such that the two species have a relative velocity v, there
will be two relevant length scales, with L ~ vt and

L, ~ t'2. Then using the same reasoning as above,
one determines the concentration to be [8,9]

c(t)~ [e(0)t @D/ 22 /[pr(d+D/2)
= [e(0)e]/2¢~(@ /4 @)
for dimension d < 3, or [¢(0)v]'/2¢t~1/2 in one dimension.

What is perhaps unexpected is that if the two species
have a drift in the same direction, even if their relative
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velocity is zero, the result may still be different from the
expected t~9/4, This is because even after subtracting
off the average motion, one does not necessarily recover
diffusive behavior.

In order to proceed, we must specify the model fur-
ther. To keep matters simple we consider a strong drift—
particles move either to the right or not at all. We con-
sider two types of particles moving on the one dimen-
sional lattice (with periodic boundary conditions). At
each (micro) time step, we randomly pick a site. If that
site is occupied, we attempt to move the particle to the
right. If the site on the right is unoccupied, the jump
succeeds. If the site is occupied by a particle of the same
species, the jump fails. If the site is occupied by a particle
of the opposite species, both particles annihilate.

We now see why the diffusive picture might be invalid.
If we just considered one species of particles, the model
described above is the asymmetric simple exclusion pro-
cess (ASEP), and the long time behavior is not governed
by a linear diffusion equation. Instead one must consider
a nonlinear stochastic equation such as the noisy Burgers
equation [10],

2
% o2 =Tl 2 3)
ot Oz oz?2 Oz
where p is a rescaled density, v is the viscosity (represent-
ing the lattice spacing), and £ is a random noise term,
e.g., white noise where the covariance is

(E&(z,t)E(2', 1)) = 2v8(x — )6 (t — t'). (4)
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FIG. 1. Log-log plot of density vs time for system of size
4 x 108. Initial densities are 0.9, 0.5, and 0.2.
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FIG. 2. Semilog plot of log,[p(t)/p(t/2)] vs time for system
of size 4 x 10°. Initial densities are 0.9, 0.5, and 0.2.

Thus the exclusion rule, even for very low densities, can
play a crucial role in the dynamics of the annihilation
process, contrary to the popular view. The importance
of the exclusion rule can also be seen by comparing this
model with studies of the reaction A+ A — 0 [11], where
there is no hard core exclusion and where the introduc-
tion of a drift does not change the asymptotic behavior
of the decay of the density.

We studied the time evolution of the density for a va-
riety of system sizes and initial densities (always taking
equal concentration of A and B particles). We considered
systems up to size 4 x 10® for up to 5 x 10® time steps.
Some example runs are shown in Fig. 1. We see that
qualitatively the asymptotic behavior seems to be inde-
pendent of the initial density, and that there appears to
be a power law decay of the density with exponent ap-
proximately equal to —1/3.

To get a better view of the slope of these curves we
examined the behavior of p(t)/p(t/2) as a function of
time. Specifically, log,[p(t)/p(t/2)] should give the slope
of the line (i.e., the exponent of the power law behavior).
Data for the same three runs as in Fig. 1 are plotted in
Fig. 2. This confirms that the decay behaves similarly for
the different initial densities, although the noise is now
much more apparent. To reduce the effect of this, we
averaged the slopes illustrated in Fig. 2 over 11 different
initial densities. The resulting data are reproduced in
Fig. 3. The error bars represent the standard deviation
of the different slopes.

The error bars at early times are primarily systematic
in origin. They represent the fact that the decay rates
are initially different for different initial densities—the
particle motion is diffusive in nature until the particles
have had a chance to interact with each other, so that we
see t~1/4 behavior at early times for low density. On the
other hand, the errors at large time are primarily random
errors; fluctuations in the initial density are significantly
amplified when the density gets small.

Extrapolating the data of Fig. 3 to infinite time is prob-
lematic. It is not clear whether the effective exponent will
continue to decrease; all one can say with confidence is
that it is less than —0.31. There are arguments, how-
ever, for believing that the answer should be —1/3, and
in particular, not —1/4.

The exponent —1/4 for the diffusive case arises because
the relevant diffusive length scale at time t is /2. On
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FIG. 3. Semilog plot of average slope vs time for system of
size 4 x 10°.

the other hand, in the noisy Burgers equation (3) and
thus in the one dimensional ASEP, there is superdiffusive
behavior, so that fluctuations spread more quickly and
the length scale is larger. Thus the relevant length scale
is t2/3 [12,13]. Thus one might expect the concentration
to go as

c(t) ~ L1/2/L ~ [t2/3]1/2/t2/3

=113, (5)
certainly consistent with what is observed. Of course,
this argument neglects the fact that only isolated clus-
ters of one species undergo asymmetric simple exclusion
dynamics, but one expects that clusters of each species do
spend most of their time reasonably isolated from each
other [5,6], so that this analysis should be applicable.
Presumably a more detailed investigation of the correla-
tions of the clusters, along the lines of [5,6], would shed
light on this matter.

Additional evidence for this process being in a differ-
ent universality class comes from work by Ben-Naim and
Zhuo [14], which uses an exact enumeration of states to
obtain the particle density via a power series in time.
The best-fit exponent for the decay of this model, fitting
the series using Padé approximants, is —0.305 [15], and
appears to be decreasing (moving away from —0.25) as
one computes more terms in the series.

One expects that the observed behavior should be uni-
versal for any system for which the dynamics are gov-
erned by the noisy Burgers equation (3). If instead of to-
tally asymmetric dynamics one chose a lesser bias the ex-
ponent would be the same, although it would take longer
for this to be apparent. For small bias one would expect
initially to see diffusive behavior, followed by a crossover
to the nonlinear regime. Unfortunately, given that one
is just barely able to access the asymptotic regime in the
totally asymmetric case, it does not seem likely that one
will be able to directly observe this crossover. Truly dif-
ferent behavior would be expected only if the dynamics
of the model were governed by a model with a different
(nonquadratic) nonlinearity.
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